PRINCIPLES OF ANALYSIS LECTURE 10 - MONOTONE SEQUENCES

PAUL L. BAILEY

1. INFINITY

The extended real numbers are $\mathbb{R} \cup \{\pm \infty\}$.

If A is unbounded above, then $\sup A = \infty$.

If A is unbounded below, then $\inf A = -\infty$.

If $\lim a_n = \pm \infty$, we say that "diverges to +- infinity".

Arithmetic of infinity based on sequences can be developed.

We say that $\lim s_n > 0$ if $\{s_n\}_{n=1}^{\infty}$ converges to a positive real number, or if $\{s_n\}_{n=1}^{\infty}$ diverges to ∞ .

Proposition 1. Let $\{s_n\}_{n=1}^{\infty}$ be a sequence of real numbers such that $\lim s_n > 0$. Then there exists $N \in \mathbb{Z}^+$ and P > 0 such that if $n \ge N$, then $s_n > P$.

Proof. If $s_n \to +\infty$, this follows directly from the definition. Thus assume that $\lim s_n = L > 0$, and set $\epsilon = \frac{L}{2}$. Let N be so large that $|s_n - L| < \epsilon$ for $n \ge N$. Then for such $n, s_n > L - \epsilon$. Let $P = L - \epsilon$.

Proposition 2. Let $\{s_n\}_{n=1}^{\infty}$ and $\{t_n\}_{n=1}^{\infty}$ be sequences of positive real numbers such that $\lim s_n = +\infty$ and $\lim t_n > 0$. Then

(a) $\lim(s_n + t_n) = +\infty;$

(b) $\lim(s_n t_n) = +\infty$.

Proof. Let M > 0.

Since $\lim t_n > 0$, there exists $N_1 \in \mathbb{Z}^+$ and P > 0 such that if $n \ge N_1$ then $t_n > P$.

Since $\lim s_n = +\infty$, there exists $N_2 \in \mathbb{Z}^+$ such that if $n \ge N_2$ then $s_n > \frac{M}{P}$. Set $N = \max N_1, N_2$; for $n \ge N$, we have

$$s_n t_n > \frac{M}{P}P = M.$$

Date: September 15, 2003.

Proposition 3. Let $\{s_n\}_{n=1}^{\infty}$ be a sequence of positive real numbers. Then

$$\lim s_n = +\infty \Leftrightarrow \lim \frac{1}{s_n} = 0$$

Proof. To show an if and only if statement, we show both directions.

(\Rightarrow) Suppose that $\lim s_n = +\infty$. Let $\epsilon > 0$, set $M = \frac{1}{\epsilon}$. Since $s_n \to +\infty$, there exists $N \in \mathbb{Z}^+$ such that if $n \ge N$, then $s_n > M$. Then for $n \ge N$, we have $|\frac{1}{s_n} - 0| = \frac{1}{s_n} < \epsilon$. (\Leftarrow) Suppose that $\lim \frac{1}{s_n} = 0$. Let M > 0 and set $\epsilon = \frac{1}{M}$. Since $\frac{1}{s_n} \to 0$, there exists $N \in \mathbb{Z}^+$ such that if $n \ge N$, then $|\frac{1}{s_n} - 0| < \epsilon$. Since s_n is positive, this is the same as $\frac{1}{s_n} < \epsilon$, which implies that $s_n > M$. Thus $s_n \to +\infty$.

Let $\{s_n\}_{n=1}^{\infty}$ be a sequence of real numbers. We say that $\{s_n\}_{n=1}^{\infty}$ is increasing if

$$m \leq n \Rightarrow s_m \leq s_n.$$

We say that $\{s_n\}_{n=1}^{\infty}$ is decreasing if

$$m \le n \Rightarrow s_m \ge s_n.$$

We say that $\{s_n\}_{n=1}^{\infty}$ is monotone if it is either increasing or decreasing.

Proposition 4. Let $\{s_n\}_{n=1}^{\infty}$ be a monotone sequence.

- (a) If $\{s_n\}_{n=1}^{\infty}$ is bounded, then it converges.
- (b) If {s_n}_{n=1}[∞] is unbounded and increasing, then it diverges to +∞.
 (c) If {s_n}_{n=1}[∞] is unbounded and decreasing, then it diverges to -∞.

Proof.

(a) Suppose that $\{s_n\}_{n=1}^{\infty}$ is bounded. Also assume that it is increasing; the proof for decreasing will be analogous. Let $S = \{s_n \mid n \in \mathbb{Z}^+\}$ be the image of the sequence, and set $u = \sup S$. Since S is bounded, $u \in \mathbb{R}$. Clearly $s_n \leq u$ for every $n \in \mathbb{Z}^+$. We show that $\lim s_n = u$.

Let $\epsilon > 0$. Since $u - \epsilon$ is not an upper bound for S, there exists $s \in S$ such that $u - \epsilon < s < u$. Now $s = s_N$ for some $N \in \mathbb{Z}^+$, and since $\{s_n\}_{n=1}^{\infty}$ is increasing, we have $u - \epsilon < s_n < u$ for every $n \ge N$. Thus $|s_n - u| < \epsilon$ for $n \ge N$; this shows that $s_n \to u$.

(b) Let M > 0.

Proposition 5. Let $\{s_n\}_{n=1}^{\infty}$ be a sequence of real numbers. Set

$$u_N = \sup\{s_n \mid n \ge N\}$$

and

$$w_N = \inf\{s_n \mid n \ge N\}.$$

Then $\{u_n\}_{n=1}^{\infty}$ is a decreasing sequence and $\{v_n\}_{n=1}^{\infty}$ is an increasing sequence.

Proof.

Let $\{s_n\}_{n=1}^{\infty}$ be a sequence of real numbers. Define

$$\limsup s_n = \lim_{N \to \infty} \sup\{s_n \mid n \ge N\}$$

and

$$\liminf s_n = \lim_{N \to \infty} \inf\{s_n \mid n \ge N\}.$$

Proposition 6. Let $\{s_n\}_{n=1}^{\infty}$ be a sequence of real numbers. Then $\{s_n\}_{n=1}^{\infty}$ converges if and only if $\liminf s_n = \limsup s_n$, in which case $\liminf s_n = \lim s_n =$ $\limsup s_n$.

Let $\{s_n\}_{n=1}^{\infty}$ be a sequence in \mathbb{R} , and let $c \in \mathbb{R}$. We say that c is a *cluster* point of $\{s_n\}_{n=1}^{\infty}$ if

$$\forall \epsilon > 0 \; \forall N \in \mathbb{Z}^+ \; \exists n \ge N \; \ni \; |s_n - c| < \epsilon.$$

Proposition 7. Let $\{s_n\}_{n=1}^{\infty}$ be a bounded sequence of real numbers. Let C be the set of cluster points of $\{s_n\}_{n=1}^{\infty}$. Then

- (a) $\limsup s_n \in C$;
- (b) $\liminf s_n \in C;$
- (c) $\sup C = \limsup s_n;$
- (d) $\inf C = \liminf s_n$.

Proof. Since $\{s_n\}_{n=1}^{\infty}$ is bounded, $\limsup s_n$ and $\liminf s_n$ exist as real numbers. Let $s = \limsup s_n$; we will prove (a) and (c), the proofs for (b) and (d) being analogous.

For (a), suppose not; then $s \notin C$. That is, there exists $\epsilon > 0$ and $N \in \mathbb{Z}^+$ such that $|s_n - s| > \epsilon$ for all $n \geq N$. Now either there exists $n \geq N$ such that $s_n > s + \epsilon$, or for every $n \geq N$, $s_n < s - \epsilon$.

In the first case, s cannot be an upper bound for S, a contradiction. In the second case, $s-\epsilon$

 $\label{eq:constraint} \begin{array}{l} \text{Department of Mathematics and CSCI, Southern Arkansas University} \\ E{-mail\ address:\ plbailey@saumag.edu} \end{array}$