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1. Infinity

The extended real numbers are R ∪ {±∞}.
If A is unbounded above, then supA = ∞.
If A is unbounded below, then inf A = −∞.
If lim an = ±∞, we say that “diverges to +- infinity”.
Arithmetic of infinity based on sequences can be developed.
We say that lim sn > 0 if {sn}∞n=1 converges to a positive real number, or if

{sn}∞n=1 diverges to ∞.

Proposition 1. Let {sn}∞n=1 be a sequence of real numbers such that lim sn > 0.
Then there exists N ∈ Z+ and P > 0 such that if n ≥ N , then sn > P .

Proof. If sn → +∞, this follows directly from the definition. Thus assume that
lim sn = L > 0, and set ε = L

2 . Let N be so large that |sn − L| < ε for n ≥ N .
Then for such n, sn > L− ε. Let P = L− ε. �

Proposition 2. Let {sn}∞n=1 and {tn}∞n=1 be sequences of positive real numbers
such that lim sn = +∞ and lim tn > 0. Then

(a) lim(sn + tn) = +∞;
(b) lim(sntn) = +∞.

Proof. Let M > 0.
Since lim tn > 0, there exists N1 ∈ Z+ and P > 0 such that if n ≥ N1 then

tn > P .
Since lim sn = +∞, there exists N2 ∈ Z+ such that if n ≥ N2 then sn > M

P .
Set N = maxN1, N2; for n ≥ N , we have

sntn >
M

P
P = M.
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Proposition 3. Let {sn}∞n=1 be a sequence of positive real numbers. Then

lim sn = +∞⇔ lim
1
sn

= 0.

Proof. To show an if and only if statement, we show both directions.
(⇒) Suppose that lim sn = +∞. Let ε > 0, set M = 1

ε . Since sn → +∞,
there exists N ∈ Z+ such that if n ≥ N , then sn > M . Then for n ≥ N , we
have | 1

sn
− 0| = 1

sn
< ε.

(⇐) Suppose that lim 1
sn

= 0. Let M > 0 and set ε = 1
M . Since 1

sn
→ 0,

there exists N ∈ Z+ such that if n ≥ N , then | 1
sn
− 0| < ε. Since sn is positive,

this is the same as 1
sn

< ε, which implies that sn > M . Thus sn → +∞. �
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2. Monotone Sequence

Let {sn}∞n=1 be a sequence of real numbers.
We say that {sn}∞n=1 is increasing if

m ≤ n ⇒ sm ≤ sn.

We say that {sn}∞n=1 is decreasing if

m ≤ n ⇒ sm ≥ sn.

We say that {sn}∞n=1 is monotone if it is either increasing or decreasing.

Proposition 4. Let {sn}∞n=1 be a monotone sequence.
(a) If {sn}∞n=1 is bounded, then it converges.
(b) If {sn}∞n=1 is unbounded and increasing, then it diverges to +∞.
(c) If {sn}∞n=1 is unbounded and decreasing, then it diverges to −∞.

Proof.

(a) Suppose that {sn}∞n=1 is bounded. Also assume that it is increasing; the
proof for decreasing will be analogous. Let S = {sn | n ∈ Z+} be the image of
the sequence, and set u = supS. Since S is bounded, u ∈ R. Clearly sn ≤ u for
every n ∈ Z+. We show that lim sn = u.

Let ε > 0. Since u−ε is not an upper bound for S, there exists s ∈ S such that
u − ε < s < u. Now s = sN for some N ∈ Z+, and since {sn}∞n=1 is increasing,
we have u − ε < sn < u for every n ≥ N . Thus |sn − u| < ε for n ≥ N ; this
shows that sn → u.

(b) Let M > 0. �

Proposition 5. Let {sn}∞n=1 be a sequence of real numbers. Set

uN = sup{sn | n ≥ N}
and

vN = inf{sn | n ≥ N}.
Then {un}∞n=1 is a decreasing sequence and {vn}∞n=1 is an increasing sequence.

Proof. �

Let {sn}∞n=1 be a sequence of real numbers. Define

lim sup sn = lim
N→∞

sup{sn | n ≥ N}

and
lim inf sn = lim

N→∞
inf{sn | n ≥ N}.

Proposition 6. Let {sn}∞n=1 be a sequence of real numbers. Then {sn}∞n=1 con-
verges if and only if lim inf sn = lim sup sn, in which case lim inf sn = lim sn =
lim sup sn.



4

3. Cluster Points of Sequences

Let {sn}∞n=1 be a sequence in R, and let c ∈ R. We say that c is a cluster
point of {sn}∞n=1 if

∀ε > 0 ∀N ∈ Z+ ∃n ≥ N 3 |sn − c| < ε.

Proposition 7. Let {sn}∞n=1 be a bounded sequence of real numbers. Let C be
the set of cluster points of {sn}∞n=1. Then

(a) lim sup sn ∈ C;
(b) lim inf sn ∈ C;
(c) supC = lim sup sn;
(d) inf C = lim inf sn.

Proof. Since {sn}∞n=1 is bounded, lim sup sn and lim inf sn exist as real numbers.
Let s = lim sup sn; we will prove (a) and (c), the proofs for (b) and (d) being
analogous.

For (a), suppose not; then s /∈ C. That is, there exists ε > 0 and N ∈ Z+

such that |sn − s| > ε for all n ≥ N . Now either there exists n ≥ N such that
sn > s + ε, or for every n ≥ N , sn < s− ε.

In the first case, s cannot be an upper bound for S, a contradiction. In the
second case, s− ε
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